202020

Velo-City Global 2010

Professor John Whitelegg The Stockholm Environment Institute

policy for bicycle transport: success story for climate protection policy

development of bicycle use 1990-2007: traffic counting + 46%

modal share:

1998: 10% of daily trips by bicycle 2010: 15% of daily trips by bicycle

Mode travel choice in Basel, Switzerland and Nottingham, UK % trips per person (Socialdata)

MODE CHOICE

€€

- MUNICH -

BICYCLE-FRIENDLY CITY

Ð

DETMOLD

City (year) (ranked by bicycle use)	Population (000)	Percent of Trips by Travel Mode (all trip purposes)			
		Bicycle	Walking	Public Transport	Auto
Muenster (1994)	270	32	22	10	37
Bremen (1991)	554	22	21	17	39
Freiburg (1992)	179	19	21	18	42
Hannover (1990)	524	16	23	22	39
Munich (1995)	1,257	15	23	25	38
Cologne (1992)	961	11	30	17	41
Berlin (2003)	3,400	10	25	27	38
Nuremberg (1995)	500	10	24	21	45
Dusseldorf (1990)	578	9	30	18	42
Kassel (1994)	192	7	28	19	45
Stuttgart (1990)	599	6	28	23	43
Essen (1990)	627	5	27	15	57

Modal Split Distributions for Selected German Cities

Sources: Werner Broeg and Erhard Erl, "Can Daily Mobility Be Reduced or Transfered to Other Modes," European Conference of the Ministers of Transport, Paris, France, Round Table 102, March 1996; and U.S. Department of Transportation, Nationwide National Transportation Survey, Washington, D.C., 1992. Pucher: Walking and Cycling for Public Health

Increases in bike share of urban trips from mid-1970s to mid-1990s in selected German cities

City	Time Period	Change in Bicycle Modal Split Share	Percentage Increase in Bicycle Share
Munich	1976 to 1992	6% to 15%	+150%
Nuremberg	1976 to 1995	4% to 10%	+150%
Cologne	1976 to 1992	6% to 11%	+83%
Freiburg	1976 to 1992	12% to 19%	+58%
Essen	1976 to 1990	3% to 5%	+67%
Bremen	1976 to 1994	16% to 22%	+38%
Muenster	1976 to 1994	29% to 32%	+10%
Average for all urban areas in Western Germany	1972 to 1995	8% to 12%	+50%

Sources: Werner Broeg and Erhard Erl, "Can Daily Mobility Be Reduced or Transfered to Other Modes," European Conference of the Ministers of Transport, OECD, Paris, France, Round Table 102, March 1996; and supplemental data collected from individual cities by the author.

Pucher: Walking and Cycling for Public Health

Co-benefits

- The economy
- Climate Change
- Space and time
- Health
- Community

Economics for beginners

- Motorised transport does not pay its costs
- Transport is a significant cost burden that can be reduced through sustainable transport policies
- Current transport policies are expensive and poor value for money

2. Performance and cost of transport

Cost of transport

Energy consumption

- Cost of transport for the community includes public transport operation and investment, road expenditure and car use.
- Cost of transport is lower in dense cities with a higher modal share of walking, cycling and public transport.

Low Carbon City V **EEWwuppertal**

Reduction need for the passenger transport in Wuppertal until 2050: -80% up to -95% CO_2 -emissions

Own estimation

Wuppertal 2050

Transportation avoidance

- -20% person kilometers
- to plan removal & re-organisation of the City!

2 Decline of population

to translate the -116.251 residents into a 100% CO_2 -reduction

to actively realise the CO₂-reduction potential of the shrinking

Modal shift of transportation

Walking:	44%
Bicycle:	15%
Public transport:	40%
Individ. motorised transport:	1%
➢to design a "Car-free City"!	

Transport engineering

- -3%-path: to quarter CO₂-emissions
- to politically develop an extreme efficiency for cars & public transport

The zero carbon project (2050)

- SEI team
- Accurate calculations of the amount of carbon we can strip out of the system
- Salami technique
- Fiscal, behavioural, spatial, technology
- Hybrid approach
- Identify Policy pathways

SEI STOCKHOLM ENVIRONMENT INSTITUTE

Amount of space required to transport the same number of people by car, bus or bicycle

Transport mode	Speed	Space required per person
Pedestrian	20 25	0.8 M ² per person
†	10 30 5 4 35 0 40 Ken/h	
Cyclist	15 ²⁰ 25	3 M ² per person
	10 30 5 35 0 40. Km/h	
Fully Occupied Car	15 ²⁰ 25	6.2 M ² per person
	10 30 5 35 0 40. Km/h	
Fully Occupied Car	15 ²⁰ 25	20 M ² per person
0 0	10 30 5 35 0 Km/h	
Car with 1 Person	15 ²⁰ 25	18.7 M ² per person
	10 30 5 35 0 40 Km/h	
Car with 1 Person	15 ²⁰ 25	60 M ² per person
0 0	10 30 5 35 0 Km/h	
Bus - Full and 1/3 Full	15 20 25	3.1 M² per person (full) 9.4 M² per person (1/3 full)
	10 - 30 -5 35 0 40 Km/h	
Bus - Full and 1/3 Full	20	9.4 M ² per person (full) 28.1 M ² per person (1/3 full)
	15 25 10 30 5 35 0 40 Km/h	
Light Rail/Metro - Full and 1/3 Full	20	1.5 M ² per person (full)
	15 225 10 30 5 35 0 40 Kowh	4.6 M² per person (1/3 full)
Light Rail/Metro - Full and 1/3 Full		
	15 ²⁰ 25	 2.2 M² per person (full) 6.9 M² per person (1/3 full)
	-5 35- 0 40.	

"The typical American male devotes more than 1,600 hours a year to his car ... He spends four of his sixteen waking hours on the road or gathering his resources for it"

(Illich, 1974, 18-19)

http://www.stationwagon.com/gallery/1973_Chevy_Impala.html

"The model American puts in 1,600 hours to get 7,500 miles: less than five miles per hour"

(Illich, 1974, 19)

Speed

- It is not possible to have a comfortable, encouraging, rewarding walk and cycle environment with speeding traffic
- 20mph/30kph is enough
- why do we reject science?

THE KEY POINT...

A city that permits 50 or 60 kph will <u>never</u> be child friendly and will <u>always</u> deter physical activity

(Austria)

House of Commons Transport Committee

Ending the Scandal of Complacency: Road Safety beyond 2010

Eleventh Report of Session 2007–08

Report, together with formal minutes, oral and written evidence

Ordered by The House of Commons to be printed 15 October 2008

What are your chances of surviving a collision if you are struck by a car while walking or cycling?

Vehicle Speed	% chances of Surviving	% of vehicles exceeding that speed in built-up areas		
		Cars	Heavy Goods Vehicles	
20 mph (app. 32km/h)	95	95	91	
30 mph (app. 48km/h)	45	72	55	
40 mph (app. 65km/h)	5	12	5	

Source: Parliamentary Advisory Council on Transport Safety (1996) Taking Action on Speeding

Effects of changes in speed on injury and fatal crashes: empirical relationships (from Nilsson 1981)

Key Points

- Safety and security need "slow cities"
- Legal measures are needed

Health

- Obesity
- Cardiovascular disease
- Mental health
- Reducing air pollution
- Reducing killed and seriously injured
- Supporting social interaction amongst the over 70s

Cycling is Healthy

40% reduction in risk of death

2-3 years longer life

10 years fitter

One death per 33m km

Benefits outweigh costs

Sustrans, 2008.

WHO guidance and tool for economic

UROPE assessment of cycling and walking

Download the guidance document, HEAT for cycling and user guide from www.euro.who.int/transport/policy/20070503 1

Walking <u>and</u> cycling

- Evidence based
- Expert consensus
- Easy to use methods
- Applicable across European region

	EC
By: Nick Cavill	IN
Sonja Kahlmeier	
Harry Rutter	Met
Francesca Racloppi	th h
Pekka Oja	l "

CONOMIC ASSESSMENT OF TRANSPORT INFRASTRUCTURE AND POLICIES

Methodological guidance on the economic appraisal of health effects related to walking and cycling

Mayer Hillman

The study concluded that those who cycled 60 miles a week from the age of 35 could add 2.5 years to their life expectancy

Cycling Towards Health and Safety, British Medical Association, 1992, page 117

Community

• Donald Appleyard "Livable streets", 1981

HEAVY TRAFFIC 16,000 vehicles per day

MEDIUM TRAFFIC 8,000 vehicles per day

LIGHT TRAFFIC 2,000 vehicles per day

1.3 friends per person 4.1 acquaintances per person

Next Monday morning

- Road traffic reduction strategy
- Parking strategy
- Carbon reduction strategy
- Prices should tell the ecological truth

